SUBSUMPTION
for the SR04 and jBot Robots
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Figure 1. Subsumption diagram (Flynn&Jones)
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Motivation

This article is a compilation of a series of email postings on the Dallas Personal

Robotics Group list server concerning the topic of robot programming, and
particularly the technigque developed by Rodney Brooks and his colleagues at M.I.T.,
known as subsumption.

It's not intended as an exhaustive study of the topic, but rather as an overview
and context for some particular practical examples from my own robots. The two
used here are the SR04 robot and jBot, although the LEGOBot runs very similar
software. If you'd like to examine videos of the behaviors of these robots, the
MyRobots web page has links for these and a few other robots.

Overview

A good starting point might be to read Chapter 9, "Robot Programming," of Flynn &
Jones' Mobile Robots first edition, and Chapter 4, "Arbitration," of Jones' Robot
Programming: A Practical Guide. I believe the DPRG library has copies of both. For
a more general discussion, see Cambrian Intelligence, an important collection of
papers that Brooks published through M.I.T. Press.

Following on from questions and feedback from the DPRG list server, this article
begins by examining several different subsumption arbitration schemes from
published literature and practical examples.
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I. Basic primitive tasks

Most automation basic primitive tasks take on something like the following generic
form:

void task()

{
while (1) {
read_sensor();
calculate_output();
output_control();
delay(ms);
end
}

This is an endless loop that executes a certain number of times per second, as
determined by the "ms" parameter. Most of my current robots have a cycle time of
20 Hz, so ms = 50.

For most tasks, the execution time of the read/calculate/output is insignificant,
measured in microseconds or less, compared to the time spent in the delay(),
measured in milliseconds or greater, as the following ASCII cartoon attempts to
illustrate:
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The delay is, of course, where the other tasks run. This can be implemented with a
simple cooperative multitasking kernel, or as a series of Finite State Machines
Augmented with timers (AFSM), examples of each are included in the section on
sample behaviors.

Of course some tasks take lots of CPU cycles, like the Kalman filter for a two
wheel balancer or IMU, image processing, sonar arrays, etc. My experience is that
these sorts of sensors and their associated filters are often best offloaded to
separate processors, depending on the horsepower of your particular robot
controller.

SR04
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II. Subsumption and Behaviors

For robot tasks used in a subsumption architecture, there is an additional
requirement: an active/inactive flag and its associated threshold:

void subsumption_task()
{
while (1) {
read_sensor();
calculate_output();
output_control (),

1f (output > threshold) flag = TRUE;
else flag = FALSE;

delay(ms);
end

}

(The word "threshold" is used loosely here, as the active/inactive test may be more
complex than a simple greater-than.)

The flag signals whether the task wishes to control the robot for this cycle (50
milliseconds on my robots) or is happy with things the way they are. Every
subsumption task must have a flag that is sometimes true and sometimes false except
the default task, which we'll get to later, which is always true (hence "default").

As the delay () described in section I allows other tasks to execute, the flag
described here allows those other executing tasks to control the robot, through the
mechanism of subsumption.

III. Arbitration

Subsumption tasks are arranged by priority, from lowest to highest, as determined
by the robot builder for a particular problem set. An arbitrator () selects the
output of the highest priority task whose flag is true to pass on to the physical
subsystem (motors or whatever) for this pass through the loop, this 20th of a
second.

Low priority tasks can only control the robot when all higher priority tasks' flags
are false. When any higher priority task sets its flag to true, that tasks' output
controls the robot for the next 50 milliseconds, and all lower priority tasks
asserting their arbitration flags are said to be “subsumed.”

A. Mobile Robots arbitration example

Jones and Flynn use the cooperative multi-tasking available in IC for their
example. They define a group of subsumption tasks and start them up at
initialization like this:

void main/()

{
start_process (motor_driver()); // control motor(s) speed
start_process (cruise()); // accelerate straight ahead
start_process (follow()); // turn toward bright 1light
start_process (avoid()); // turn away from IR reflections
start_process (escape()); // bumper collision recovery
start_process (arbitrate()); // send highest priority to motors



These 6 tasks run asynchronously. The four behaviors, cruise, follow, avoid, and
escape, signal the arbitrate process with their output flags, which passes along
the commands of the arbitration winner to the motor_driver () task. See Mobile_
Robots for implementation details of the particular tasks.

Here is Flynn and Jones' arbitration code from Mobile Robots p264, for a scheme
with these 4 tasks/layers/behaviors (pick your own terminology...):

void arbitrate()

{
while (1) {
1f (cruise_output_flag == 1)
{motor_input = cruise_output; }
if (follow_output_flag == 1)
{motor_input = follow_output,; }
if (avoid_output_flag == 1)
{motor_input = avoid_output; }
if (escape_output_flag == 1)
{motor_input = escape_output; }
sleep(tick);
}
}
In this case the tasks are listed from lowest priority, cruise, to highest
priority, escape. The lowest priority, cruise, is the default behavior and
its flag is always == 1, so this loop always begins with the motor_input set
to cruise_output. If no higher priority tasks are asserting their flags, then

that is the output delivered to the motors when the motor task runs during the
sleep(tick) period of delay.

Note that this technique for arbitration might not work in an interrupt driven
environment when the motor updates are happening asynchronously from the
arbitrate() loop. Randy Dumse adds:

“...a simple substitution scheme needs to be sure the substitutes are substituted
before making it to the outputs, such as might happen if an interrupt routine
asynchronously grabbed the results before every behavior had its chance to
substitute.”

In the above example from Flynn and Jones, the use of the cooperative multi-tasking
capability of the IC language provides for atomic execution of the task itself, as
all other tasks run only during arbitrate()'s sleep(tick) period.

These behaviors and their arbitration scheme are the same as those illustrated
schematically in the figure 1, at the top of the first page of this article.

LEGOBot
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B. Robot Programming arbitration example.

Joseph Jones seems to prefer schematics over code, and his excellent Robot
Programming book includes a number of diagrams of subsumption processes and their
variations.

Here is one of Jones' examples from Robot Programming, fig 4.5 pp82-83, which
includes a number of interesting features. (Note that the following “ASCII-ART”
illustration probably only makes sense when viewed with a mono-spaced font.)

J.Jones' Robot Programming arbitration example:
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Notes:

1. Jones' illustrates multiple behaviors making use of the same sensors, and
reading more than one sensor.

2. He also includes a feedback line from Arbitrate back to the tasks. This is
essentially a global variable that contains the ID of the task that “won” this
round of arbitration. It can be used by the individual tasks to determine if they
have been subsumed.

3. See Robot Programming Chapter 8, “Implementation” for more details.




C. SR04 Robot arbitration example

The SR04 robot uses a home-brew cooperative multi-tasking kernel in addition to a
single large sensor loop running at 20 Hz, to control the robot. A group of
concurrent tasks, including the sensor loop, user I/0, odometry calculations, and a
sound synthesizer are defined, and are started up by main(), like this:

2 */
main/()
{
srat_init(); // SR04 initialize system and tasks
create_process (trace, 0,64) ; // CPU load monitor
create_process (play_note, 0,128); // FM synthesis
create_process(sing_songs, 0,256); // music and audible warnings
create_process (sensors, 0,512); // main sensor loop
create_process (odometers, 0, 256); // calculate robot position
create_process (user_interface, 0,512); // buttons and LCD
create_process (reset_servos,0,64); // retract motion detector and gripper
scheduler(); // start multitasking.
printf ("should never get here\n"); // scheduler () never returns.
}
create_process () adds a process to the multitasking queue. Its arguments are the
function, initial parameter, and stack size. The process we are interested in here

is the sensors() task, which is the primary subsumption loop controlling the robot.
Here is the code and some comments for the main sensor loop on SRO04:

2 */
void sensors() // SR04 20 Hz sensor loop
{
INT32 ¢;
mseconds (&t) ; // set local 32 bit timer t to now
while (1) { // endless loop
i1f (srat_system & ARBITRATE) {
speedctrl(); // PID
slewspeed_task(); // velocity profiler
prowl_task(); // seek navigation coordinates
bumper_task () ; // ballastic collision recovery
photo_task(); // seek/avoid 1light
ir task(); // seek/avoid IR reflections
sonar_task(); // seek/avoid sonar reflections
motion_task(); // motion detector
xlate task(); // rotate and scan
behaviors_task(); // scan for soda can profiles
passive_task () ; // jump toward/away from movement
seek_task(); // seek/avoid IR beacon
boundary_task(); // detect virtual walls with odometry
feelers(); // gripper grasping reflex
arbitrate(); // send highest priority to motors
}
tsleep(&t, 50); // suspend in multitasking queue
} // for the remainder of 50 ms, then loop



// SR04 tasks use a C struct named LAYER for their output commands:
typedef struct layer LAYER;

struct layer {

int cmd; /* assertion command */
int arg; /* assertion argument */
int state; /* layer state, used by AFSM tasks */

};

// SR04 has 9 subsumption behaviors, so define 9 LAYERS:

LAYER bump,motion, ir, boundary, sonar, photo,xlate, prowl, stop,

// layers[] is an array of pointers to the LAYER struct for each task:
#define LAYERS 9

LAYER *layers[LAYERS] =
{&bump, §motion, &ir, &boundary, &sonar, &photo, &xlate, &prowl, &stop};

2 */
// The arbitration flags on SR04 are implemented as bit positions in a
// 16 bit flag word (hence only 16 possible layers), defined as follows:

#define BUMP 1
#define MOTION 2
#define IR 4

#define BOUNDARY &8
#define SONAR 0x10
#define PHOTO 0x20
#define XLATE 0x40
#define PROWL 0x80
#define DEFAULT 0x100

// These bits definition apply to a set of global masks:

int srat_flags; /* bit = layer asserting */

int srat_avoid; /* bit = invert response */

int srat_enable; /* bit = enable this layer */

int srat_suppress; /* bit = ignore this layer */

/* _______________________________________________________________ */
/* SR04 arbitration code */

int arbitrate() // call this from sensors() loop at 20 Hz
{

int 1,7;
i = 0;
if (srat_system & ARBITRATE) |

J = ~srat_suppress & srat_flags; // suppress

while ((F7 & 1) == 0) { // subsume
J /=2
i4+;
if (i == LAYERS-1) break; // default
}
motor_cmd(layers([i]); // execute



Note that arbitrate() is not an endless loop, but rather is called within the
robot's sensors() loop, which runs at 20 Hz. The output goes to motor_cmd(), which
takes a pointer to the winning layer and calculates motor velocities for the two
wheel motors controlled by the speed control subsystem.

By passing in the actual velocity and rotation arguments, the tasks are able
to generate velocity profiles such that the behaviors blend one into another
for smooth and graceful maneuvering:

/* _______________________________________________________________ */
/* Left and Right motor commands for SR04 */

int top_speed; // global, top speed set by user

int bot_speed; // global, current requested robot speed

int motor_cmd(LAYER *1)

{

int extern Lvel, Rvel; // Left and Right requested motor velocity
// these are inputs to the PID controller

bot_speed = 1->cmd; // current requested velocity */
Lvel = bot_speed + 1->arg; // left motor = velocity + rotation
clip(Lvel,100,-100); // don't overflow +- 100% full speed
Rvel = bot_speed — l->arg; // right motor = velocity — rotation
clip(Rvel,100,-100); // don't overflow +- 100% full speed

}

/* _______________________________________________________________ */

Notes on SR04's arbitration:

1. There are nine behavior tasks on the SR04 robot. Each has an associated LAYER
structure for its I/0O. Pointers to these structures are grouped into an array,
layers[], for processing by the arbitrate task.

2. The tasks called from the SR04 sensors() loop each generate three outputs: a
flag bit, a command, and an argument. For the platform motion control, the command
is the requested velocity of the center of the robot, and the argument is the
rotational velocity about the center of the robot, that is: speed and steering.

3. Tasks are enabled by setting their bit in the srat_enable global. The tasks

signal the arbitrator by setting or clearing their bit in the srat_flags global.
Task behavior can be inverted by setting a bit in the srat_invert global, -- for
example, seeking dark rather than light. Behaviors can be suppressed by setting
the appropriate bit in the srat_suppress global.

4. The tsleep() function is a special form of msleep() that takes into account the
execution time of the entire loop in calculating how long to delay. So the
repetition rate, (and sample rate for any included tasks) remains constant.

5. Those familiar with SR04 from the DPRG CanCan competition might notice that
there is no "can collecting" layer. SR04's can collecting is an emergent behavior
formed from a particular combination of the these tasks and their modes, and a
separate feeler-actuated gripper that grabs anything it touches.

The arbitration scheme used on jBot is similar to the one described here for SR04,
with a only few modifications and simplifications.



D. jBot arbitration example

jBot uses a Motorola 68332 processor running in a Mini Robominds controller. This
is a full 32bit processor with the CPU32 core instruction set. The processor is
more complex than the HC1ll used on SR04 and LEGObot but as a consequence the tasks
are generally simpler to construct, and more powerful and flexible in their
configuration and execution. Here's jBot's startup sequence:

int main() // jBot startup

system_init (), // cpu, tpu, sysclock, lcd, led, sci, interrupts
Jbot_init(); // behavior inits

fprintf (stdout, "$s\nHowdy.\n", VERSION) ; // stdout = serial port
fprintf (stderr, "$s\tHowdy.\n", VERSION) ; // stderr = LCD

create_task (trace, 0,64); // monitor CPU load
create_task (uio, 0,1024); // user I/O
create_task (green_led, 0,64); // flash heartbeat

create_task (sensors, (0,1024) ; // main sensor loop
create_task (odometers, 0,1024) ; // calculate robot location
create_task (sonar_task,0,512); // sonar array driver

create_task (delayed _init,0,128); // inits that must wait on GPS or IMU

scheduler(); // let's go!
printf ("Should never get here\n");

}
/* ______________________________________________________________________ */
As was the case with the SR04 robot, the process of interest for this article is
the sensors() loop started by main(). Here is jBot's sensors() loop:
/* ______________________________________________________________________ */
void sensors () // jBot 20 Hz main sensor loop
{
int t = mseconds(); // set timer
while (1) { // endless loop
knob_task () ; // on-board knob for testing
radio_task(),; // drive from R/C receiver
xlate_ task(); // rotate and scan
prowl_task(); // seek navigation coordinates
escape_task(); // ballistic sequences
obstacle_task(); // sonar avoid
perimeter_task(); // sonar perimeter following
navmode_task () ; // monitor/modify navigation mode
arbitrator(); // pass highest priority to motors

t = tsleep(t,50); // suspend for the rest of 50 ms.
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jBot's arbitration differs from SR04 mainly in that there is an indirect mapping
between tasks and their priorities, so that different over—-all priority schemes can
be used to solve different problems, as Jones suggests in Fig 8.5, pp223-225 of
Robot Programming.

The arbitration flag has been moved into the LAYER structure, and the
suppress_flags are not implemented for this robot. jBot's arbitration also
implements Jones' *“arbitration winner” signal, which maintains a pointer to the
highest priority task asserting its flag in the global named this_layer.

/* */

/* jBot arbitration struct */

typedef struct layer LAYER; // C struct for subsumption task output

struct layer {

int cmd; // assertion command
int arg; // assertion argument
int flag; // subsumption flag

};
LAYER xlate, user, radio, prowl, escape, obstacle, perimeter;
#define JOBI1_SIZE 8

LAYER *jobl[JOBI1_SIZE] =
{&user, §radio, §escape, &xlate, sobstacle, &perimeter, &prowl, &stop};

LAYER stop; // the default layer
LAYER *this_layer = &stop; // output, layer chosen by arbitrator()
LAYER **job; // pointer to job priority 1list
int job_size; // number of tasks in priority 1list
/* ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, */
/* jBot's arbitration code */
int arbitrate; // global flag to enable subsumption
int halt; // global flag to halt robot
int arbitrator() // jBot arbitration code
{
int 1 = 0;

if (arbitrate) {
for (i = 0; 1 < job _size-1; i++) { // step through tasks

if (job[i]->flag) break; // subsume
}
this_layer = job[i]; // global output winner
motor_cmd (this_layer); // send command to motors
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jobl is set as the active job at startup time by code called during the robot's
behavior initializations:

/* _______________________________________________________________ */
int jobl_init() // make jobl the active job
{

job = &jobl[0]; // global job priority 1list pointer

job _size = JOBI1_SIZE; // number of tasks in jobl 1ist
return 0;

Notes on jBot's arbitration:
1. Most of the notes for SR04's arbitration apply to jBot as well.

2. Several of jBot's tasks read its IMU sensor, it's Sonar Array, and it's GPS data
stream. These and the quadrature encoders on the two drive motors are currently
jBot's only sensors.

3. At initialization the robot also starts up a series of tasks not documented in
this article, which run in parallel on the 68332's Timer Processor Unit (TPU).
These include quadrature decode for the motor encoders, decoders for the R/C
signals, sequencing and timing for a 4-element sonar array and user interface, and
serial communications for a GPS and a 9 DOF Inertial Measurement Unit.

4. Some information on the implementation of the IMU subsystem and its integration
into the robot's navigation algorithms is available from jBot's IMU Odometry,
also linked from jBot's webpage.

5. jBot has a 4-element sonar array that needs more complex calculations and
sequencing than the two sonar on SR04. That is the job of the sonar _task(). The
actual behaviors for this task are the obstacle(), perimeter() and escape()
behaviors.

6. sonar_task() will probably be moved eventually to an off-board processor to
allow expansion from 4 to 6 sensors in the sonar array, for full 90 degree coverage
(current coverage is 60 degrees).

Notes on multitasking:

The use of a cooperative multi-tasking kernel to implement control code on these
robots is a matter of convenience and not of necessity. All the same functions can
be implemented without it. The only absolute requirement is for a 32 bit real-time
clock running at 1000 Hz, which can be accessed by all the tasks. For SR04 and
jBot, that clock is named sysclock and is driven by a 1000 Hz interrupt.

Having said that, a multitasking OS is an awfully handy thing to have when
implementing robot control code. The Flynn/Jones examples use Interactive C, which
is available for the Motorola 68HCll processor from Newton Labs. SR04 and LEGOBot
use a home-brew executive based on the article “A Minimalist Multitasking
Executive” from Circuit Cellar Magazine. jBot also uses a home-brew executive for
the M68332 which will be published on-line by the DPRG in the near future. Fellow
robot builder Duane Gustavus uses the powerful RTEMS OS to create his subsumption
robot code, running on a Mini Robomind controller like that used by jBot.
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Notes on ballistic behaviors:

Joseph Jones uses the term "ballistic" in Robot Programming to define a class of
behaviors that, once initiated, use internal timers rather than external sensors to
generate outputs.

The most familiar of these for many robot builders is the classic bumper behavior,
where a bumper press causes the robot to back up for a while, rotate away from the
collision for a while, and drive forward for a while, before releasing control of
the robot.

These are called ballistic behaviors in order to make the distinction that, like a
shot fired from a cannon, they continue to completion “on their own,” as it were,
once initiated. Jones distinguishes these behaviors from basic closed loop or
feedback tasks, which he calls “servo” behaviors.

Ballistic behaviors in a certain sense break the subsumption paradigm, because they
cannot easily be subsumed. They are however, in my experience, the exception
rather than the rule, in terms of how often they are actually needed to control the
robot. Jones advises using ballistic behaviors sparingly.

Three attributes of ballistic behaviors that may not be immediately apparent:

1. Ballistic behaviors cannot be subsumed: they must run to completion.
2. Ballistic behaviors are therefore usually assigned highest priority.
3. Ballistic behaviors can, however, be aborted.

In fact, abort is really the only reasonable response of a ballistic task when
subsumed. For the SR04 robot, the only task that can subsume a ballistic bumper
behavior, which is the highest priority behavior, is another ballistic bumper
behavior.

So if, in the course of a ballistic bumper behavior, the SR04 has another
collision, the current ballistic behavior is aborted, and a new behavior is
initiated.

For robots with more than one ballistic behavior at more than one priority level,
the "arbitration winner" global defined by Jones can be used by each ballistic
behavior to see if it has been subsumed, and to abort itself in that case.

Note that in the case of a ballistic behavior implemented as an augmented finite
state machine, as illustrated in the next section, abort just means resetting the
task's state variable to O.

JjBot uses ballistic behaviors to escape from entrapment.



IV. Example Subsumption Behaviors

Here are some sample subsumption tasks based on the arbitration schemes described
in the previous sections. Included are example implementations for concurrent
behavior tasks in a multitasking environment and also for inclusion in a single
larger sensor loop. A sample ballistic behavior is implemented both for
multitasking and as a stand-alone Augmented Finite State Machine (AFSM, an FSM
augmented with a timer), suitable for inclusion in a large sensor loop like those
used by jBot and SR04.

These are coding examples and not the actual code running on those robots, which is
more complex, but the principles are the same. These examples use jBot's
arbitrator and implement the “continuous message” model of subsumption, as
described below and illustrated graphically in section VI.

A. A Photo behavior

This behavior uses a pair of Cadmium Sulfide photo cells to seek toward or away
from light. This is one of the easiest behaviors to get working. The sensors are
used as the upper half of a pair of voltage dividers which are read by two A/D
converter channels commonly found on robot micro-controllers, including the
Motorola HC1ll used on SR04 and jBot's MRM board.

The photocells are mounted on the rear of the robot pointing forward and aimed
slightly left and right of center. Here's a picture of a pair of photocells
mounted on the motion detector of SR04.

int photo_task()

{
extern LAYER photo; // C structure for task output
int detect = read_analog(LEFT) - read_analog(RIGHT) + PHOTO_OFFSET_ERROR;
if (photo_avoid == TRUE) detect = -detect;,
if (abs(detect) > PHOTO_DEADZONE) { // if one side significantly brighter
photo.cmd = top_speed; // request top speed
if (detect > 0) // turn toward brighter side
photo.arg = TURN_LEFT;
else photo.arg = TURN_RIGHT,;
photo.flag = TRUE; // signal arbitrater we want control
} else photo.flag = FALSE; // else we are in dead-zone with 1light
// more—-or—less directly ahead,
// so release control
}
This task can be called from a single large sensor loop. It can also be used as a

standalone concurrent task like the IC examples from Mobile Robots by calling it
from an endless loop with the appropriate delay:

void photo_behavior () // photo behavior as an IC or concurrent task
{
while (1) {
photo_task () ; // read/compute/output and set subsumption flag
msleep(50); // suspend in multi-tasking queue for 50 ms.
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Notes on photo_task():

1. The PHOTO_OFFSET_ERROR constant can be used to match the response of the two
photo cells, so that the robot actually drives toward the light and not offset left
or right of it.

2. The DEADZONE constant keeps the robot from “swimming” towards the light by
defining a dead-band around zero when the light is roughly straight ahead. Note
that the photo layer only releases control when the light is in this dead-band.

3. The resulting behavior is that this layer sends outputs to turn left and right
at top speed towards the brightest light, unless that light is in front of it.

4. The behavior can seek instead toward the “darkest” light by negating the detect
value after the sensors are read. Together these are often called photovore and
photoavoid behaviors. (Also moth and cockroach behaviors, for obvious reasons.)

B. An IR avoidance behavior.

This IR behavior uses a pair of IR LEDs as emitters and a pair of Radio Shack IR
detector modules mounted on the front of the robot, again pointed left and right,
as detectors. Here is a picture of the TR emitters and detectors mounted in a
shadow box attached to the front bumper of SR04. The sensors themselves are driven
by a 40kHz signal modulated at 100 Hz by an interrupt routine.

int ir_task()

{
extern LAYER ir; // C structure for task output
int detect = read ir_sensors(); // read sensors
if (detect == LEFT) { // 1f reflection on the left
ir.cmd = HALF _SPEED; // request slow down
ir.arg = RIGHT_TURN; // and turn right
ir.flag = TRUE; // signal arbitrater we want control
} else |
if (detect == RIGHT) { // else if reflection on the right
ir.cmd = HALF SPEED; // request slow down
ir.arg = LEFT_TURN; // and turn left
ir.flag = TRUE; // tell arbitrater we want control
} else |
1f (detect == BOTH) { // else if reflection left and right
ir.cmd = ZERO_SPEED; // request slow to zero
ir.arg = keep_turning(); // keep turning same direction
ir.flag = TRUE; // signal arbitrater we want control
} else {
ir.flag = FALSE; // else no detection, release control
}
}
}
}

Using the IR task in a multitasking implementation is similar to the photo task:

void ir_ behavior ()

{
while (1) { // endless loop
ir task() // read/computer/output and set subsumption flag
msleep(50); // suspend in multitasking queue for 50 ms.
}


http://www.geology.smu.edu/~dpa-www/robots/sr04/image49.jpg
http://www.geology.smu.edu/~dpa-www/robots/sr04/image46.jpg

Notes on ir_task():

1. The IR emitters and detectors together create a pattern of two overlapping lobes
of reflections in front of the robot. Objects which reflect infrared light will
trigger left, right, or both detectors when within the ranges of those two lobes,
out to about 18 inches away, depending on the reflectivity of the object's surface.

2. This behavior slows the robot anytime it detects an IR reflection, and slows
the robot to a stop if the detection is directly ahead, allowing only rotations
around the robot's center until one or the other of the detectors is cleared. As a
practical matter, this means the robot only can accelerate to top speed in the
absence of IR detections.

3. Here is a blow-by-blow account of the arbitration cycle for this behavior as it
avoids an obstacle on the right.

The IR avoidance task detects an IR reflection on the right sensor, so it outputs a
command to slow down and turn left, and sets its subsumption flag to TRUE in order
to signal the arbitrator that it wants to control the robot. Assume it is the
highest priority flag at that moment, so the arbitrator sends the IR task's
commands to the motors to slow down and turn left, and that is what the motors do
(ignoring any PID slewing, etc) for the next 50 ms, until the next time through the
subsumption loop. But that's all, just for the next 50 milliseconds.

Now, 1/20 second later as the loop executes again, the robot has hardly moved at
all, and so the IR avoidance task still detects an IR reflection on the right, and
again outputs a command to slow down and turn left, and again sets its subsumption
flag to active to signal the arbitrator. Again it is the highest priority layer
signaling and the arbitrator again passes its command to the motors to slow down
and turn left, and that's what they do for the next 50 milliseconds. But only for
the next 50 milliseconds.

This processes continues each time through the subsumption loop, with the IR
avoidance winning the priority contest in little, 50 millisecond chunks, and
passing its command to turn left to the motors each time, 20 times a second.

After, lets say, 2 seconds (40 times through the loop, 40 turn left commands to the
motors) the robot has finally turned left far enough that the next time through

loop, the IR avoidance detector no longer "sees" a detection on the right. So on
that pass through the loop, the IR avoidance behavior's flag becomes FALSE (no
detection). And some other, lower priority, behavior gets to pass its commands to

the motors.

The output from the IR avoidance behavior goes away as soon as the detection goes
away, (or within 50 ms thereof). By contrast, the output from the photo behavior
only goes away when the robot is headed directly towards the brightest light.

SR04 navigating and grabbing things.



C. A Collision recovery ballistic behavior.

Here is simplified code for a bumper behavior. This behavior is illustrated

two ways; first as a multi-tasking behavior, and then as an Augmented Finite State
Machine (AFSM). The sensors in this case are left and right micro switches mounted
behind the front bumper, which is pivoted in the center. Here is a diagram of the
bumper on SRO4.

jBot has “virtual bumpers” derived from it's wheel odometry and Inertial
Measurement Unit, but the behaviors, once triggered, are very similar to those
outlined here.

void bumper._behavior() /* Collision recovery as concurrent task */
! extern LAYER bump; // C structure for behavior output
int bumper; // local to hold bumper switches status
while (1) { // endless loop
bumper = read_bumper_switches(); // read the bumper switches
if (bumper) { // 1f any switches are closed

// Ballistic segment 1

bump.cmd = BACKUP_SLOW; // request reverse low speed

bump.arg = 0; // straight back

bump.flag = TRUE; // signal arbitrater

msleep (1000); // suspend and back up for 1 second
// Ballistic segment 2

bump.cmd = HALF _SPEED; // then request forward % speed

if (bump == LEFT) // and turn away from the bump

bump.arg = RIGHT _TURN;
else bump.arg = LEFI_TURN;

msleep (500); // suspend and turn for 1/2 second
// Ballistic segment 3

bump.cmd = top_speed; // request full speed

bump.arg = 0; // straight forward

bump.flag = TRUE; // signal arbitrater

msleep (250); // suspend and forward for 1/4 second
// Ballistic segments complete

bump.flag = FALSE; // then reset arbitration flag and loop

} else { // else if no bumps,
bump.flag = FALSE; // reset flag and
msleep(10); // loop at 100Hz, looking for bumps

}

This behavior is very similar to the escape() behavior described by Flynn and Jones
in their “Robot Programming” chapter of Mobile Robots. Note that during the
backup, turn, and forward sequences, the behavior is suspended in the multitasking
queue by the msleep() calls, and does not test the switches again until the end of
the entire ballistic behavior. Termination of the behavior depends on the timers.

(This simple implementation example does not allow for the behavior to interrupt or
reset itself, but a practical bumper behavior might need that capability.)


http://www.geology.smu.edu/~dpa-www/robots/sr04/image44.jpg
http://www.geology.smu.edu/~dpa-www/robots/sr04/image44.jpg

D. Collision recovery as an AFSM task

Here is the same collision recovery behavior coded as an Augmented Finite State

Machine,
and jBot.

suitable for inclusion in a large sensors()

loop like those used by SR04

/* persistent local variables for the AFSM */

int bumper,
bumper_state,
bumper_timer;

// AFSM variable

int bumper_task()

extern LAYER bumper;
extern int sysclock;

if (sysclock > bumper_timer) {
1f (bumper_state == 0) {
bumper =

if (bumper) {

bumper.cmd = BACKUP_SLOW;
bumper.arg = 0;

bumper.flag = TRUE;
bumper_timer = sysclock + 1000,

read_bumper_switches;

// bumper switches status
// ballistic behavior timer

// Collision recovery behavior as an AFSM

// C structure for task output
// 32 bit 1000 Hz real time clock

// 1f timer has expired

// state 0 == looking for bumps
// so read the switches
// 1f any switches are closed
// Ballistic segment 1
// request backup slow
// straight back

// signal arbitrater

// set timer to now + 1000 ms

bumper_state = 1; // set state=1, backing up
// and exit
} else { // else, no bumper detections
bumper.flag = FALSE; // so reset arbitration flag and exit
}
} else
if (bumper_state == 1) { // ballistic segment 1 has completed
// Ballistic segment 2
bumper.cmd = HALF_SPEED; // request % speed forward
if (bumper == LEFT) // turn away from bump
bumper.arg = RIGHT_TURN;
else bumper.arg = LEFT TURN;
bumper_timer = sysclock + 500; // set timer to now + 500 ms
bumper_state = 2; // set state=2, turning away. and exit
} else
if (bumper_state == 2) { // ballistic segment 2 has complete
// Ballistic segment 3
bumper.cmd = top_speed; // request top speed
bumper.arg = 0; // straight forward
bumper_timer = sysclock + 250; // set timer to now + 250 ms
bumper_state = 3; // set state=3, drive forward, and exit
} else { // ballistic segment 3 has completed
bumper.flag = FALSE; // reset arbitration flag to false,
bumper_state = 0; // and reset behavior state to 0



Notes on bumper_task():

The following cycle-by-cycle description of the arbitration loop applies to both
the multi-tasking and the AFSM collision recovery ballistic behaviors. It
describes the response of the task to a collision with the right bumper.

When the bumper gets a collision, on the right for our example, it closes the right
bumper switch. The current status of the switches is returned by the
read_bumper_switches() sensor code, and placed in the variable bumper. If bumper
is non-zero, one of the bumper switches has been pressed.

The bumper task reads the bumper switches once each time around the arbitration
loop, or 20 times per second. If no switches are pressed then the variable bumper
is 0, and the task just exits. That's what happens most of the time.

In our case the bumper variable is not zero, and that triggers the start of a
ballistic behavior.

The task first requests the robot's motors to backup at half speed, sets its
subsumption flag=TRUE to signal the arbitrator, and sets an internal TIMER to,
let's say one second, i.e., 1000 ms.

Assuming this behavior is the highest priority asserting a flag, the command to
backup will be passed by the arbitrator to the motors. And for the next 50 ms,
(ignoring any PID slewing, etc) that's what the motors will do.

Now, 1/20 second later when the loop executes again, the task is no longer reading
and testing the sensors, but rather is reading and testing the timer.

That is why it is a ballistic behavior. Its termination depends on an internal
timer, rather than the absence of an external sensor detection. The original
switch closure has long disappeared before the ballistic behavior completes.

For the multitasking implementation, this means the task is suspended in the
multitasking queue for 1000 ms. For the AFSM task, it means that each time it is
called from the sensors() loop it returns immediately because its timer has not yet
timed out, for 1000 ms. Consequently the task leaves the output command as backup
and the subsumption flag as TRUE. The arbitrator passes the command each time to
the motors, and the robot continues to backup.

This continues for another 18 times though the subsumption loop (20 loops = 1 sec).
On the 21st time through the loop, the timer has expired, and the task sequences to
the next state, which is a turn left command. It leaves the subsumption flag TRUE,
requests the motors to turn left at half speed, and sets the internal TIMER to half
second.

For the next half second, 10 times through the loop, the task is again waiting on
the timer, while its command is passed each time by the arbitrator to the motors.
When it times out on the 11" pass through the loop, the task sequences to the
third and final segment of the behavior, which is a short drive straight forward
(an attempt to get around whatever it is we collided with). The task requests top
speed straight ahead, leaves the subsumption flag TRUE, and sets the timer to
quarter second.

So for the next quarter second, 5 times through the loop, the task waits on the
timer while passing its commands to the motors with each loop. On the 6™ time
through the loop, it times out, and the collision recovery ballistic behavior is
complete.



The task then sets its subsumption flag FALSE and goes back to reading the bumper
switches each time around the loop, allowing lower priority tasks to control the
robot.

Note that the multitasking implementation of this behavior can scan the switches
asynchronously from the rest of the arbitration loop, allowing it to loop at 100 Hz
when testing the switches.

V. The Default Behavior

The default behavior is the lowest priority behavior in the subsumption arbitration
scheme. The default behavior from the Flynn/Jones book is cruise(). This task
requests full speed straight ahead from the motors, and its subsumption flag is
always TRUE. Because it is the lowest priority behavior, that is what the robot
does in the absence of any other higher priority motor commands.

A. The cruise() behavior

int cruise_task()

{
extern LAYER cruise;
cruise.cmd = top_speed; // request top speed
cruise.arg = 0; // straight ahead
cruise.flag = TRUE; // always
}
A small variation on this produces an interesting behavior. The addition of the

invert flags illustrated for SR04 allows the task to drive to top speed OR to zero,
depending on the state of the invert flag. An enable/disable flag for the behavior
is also useful:

int cruise_task()

{
extern LAYER cruise; // C structure for output
if (cruise_enable) { // 1f enabled
if (cruise_invert) // and inverted
cruise.cmd = 0; // request speed 0
else cruise.cmd = top_speed; // else request top speed
cruise.arg = 0; // straight ahead
cruise.flag = TRUE; // always
} else {
cruise.flag = FALSE; // unless disabled
}
}

This can also be called from an endless loop with a delay for a multitasking
implementation.

void cruise _behavior ()
{
while (1) {
cruise_task();
msleep(50);



Notes on cruise():

1. The cruise behavior normally accelerates the robot to full speed in the absence
of other behaviors.

2. Inverting the response by driving the robot to zero produces an interesting
behavior also. The robot tends to move in response to sensor detections, but
otherwise comes to a rest. So it will wander around the space until it “finds its

spot” and there it will stop. Lighting changes in the room or people or objects
moving into its IR detection range will cause it to move and to seek a new resting
place. Sort of like a pet.

B. Navigation Behavior

The SR04, jBot, and LEGObot robots each run a concurrent task that calculates the
robot's own position in X,Y inches relative to where it was last reset, using data
from the robot's wheel encoders. (jBot also uses a 3 axis Inertial Measurement
Unit and a GPS). These coordinates are calculated in floating point at a rate of
10 Hz on the two HCll-powered robots and 20 Hz on jBot.

Using the coordinates of the robot and a bit of trig, the angle and distance to any
other arbitrary coordinates can be determined. The function locate target() listed
at the end of this article takes a pair of target coordinates and returns distance
in inches and heading error in degrees.

With the heading error value we can write a simple navigation behavior, very
similar to the photo attraction behavior, that will steer the robot towards a

coordinate location.

int navigation_task()

{
extern LAYER navigate; // C structure for output
int distance, heading_error; // values returned from virtual sensor
locate_target (target, &distance, §heading error); // read *“sensor”
if (abs(heading error) > NAV_DEADZONE) { // is heading error large enough?
navigate.cmd = top_speed; // yes, request top speed
if (heading_error < 0) // turn toward target
navigate.arg = TURN_LEFT;
else navigate.arg = TURN_RIGHT;
navigate.flag = TRUE; // signal arbitrater
} else {
navigate.flag = FALSE; // else target is ahead, reset flag
}
}

As with the photo task, this task only releases the subsumption flag when the
target is more or less directly ahead, in the navigation dead-zone. I usually make
NAV_DEADZONE 5 or 10 degrees wide. As with the photo behavior, this behavior
should have low priority.

We have data for navigation that we don't have for the photo behavior: the actual
distance to the target. This can be used for all sorts of things, including
decelerating and stopping when the robot arrives at the target.


http://geology.heroy.smu.edu/~dpa-www/robo/Encoder/imu_odo/
http://geology.heroy.smu.edu/~dpa-www/robo/Encoder/imu_odo/

C. The default prowl() behavior

SR04, jBot, and the LEGOBot each use a default behavior named prowl (), which
incorporates elements of both the cruise() and the navigate() behaviors, depending
on the state of a global target_active flag. When the flag is TRUE, prowl() steers
the robot towards an X,Y coordinate location. Otherwise it accelerates the robot
straight ahead to top speed or decelerates to 0, depending on the prowl_invert
flag.

Here's a simplified implementation of the prowl() task that also includes the
ability to slow down and stop the robot when it reaches a coordinate target.

#define TARGET RADIUS 10 // error radius around target in inches
#define DOWN_RAMP 36 // slow down within 36 inches of target
#define MINSPEED AT TARGET 5 // don't go slower than 5 magic speed units.

int prowl_enable, prowl_invert; // prowl mode flags

int prowl_task() // call this from 20 Hz sensor loop

{
extern LAYER prowl; // C structure for output
extern int target_active; // global, reset when target acquired
int distance, heading_error; // values returned from virtual sensor

if (prowl_enable) prowl.flag = TRUE; else prowl.flag = FALSE;

1f (target_active == 0) { // do cruise() behavior
if (prowl_invert) prowl.cmd = 0; // decelerate
else prowl.cmd = top_speed; // or accelerate
prowl.arg = 0; // straight ahead
} else { // else do navigate() behavior
locate_target (target, &distance, §heading error); // read the “sensor”
if (distance < TARGET_RADIUS) { // arrived at target?
prowl.cmd = 0; // yes, stop
prowl.arg = 0; // stop turning
target_active = 0; // signal that target i1s acquired
} else { // else, still looking for target
1f (distance < DOWN_RAMP) { // slow down when getting close

prowl.cmd =((distance*top_speed)/DOWN_RAMP) ;
1f (prowl.cmd < MINSPEED AT TARGET)
prowl.cmd = MINSPEED AT _TARGET;

} else |
prowl.cmd = top_speed; // distance > 367, request top speed

}
if (abs(heading error) > NAV_DEADZONE) { // heading error large?

if (heading error < 0) // yes, steer toward target

prowl.arg = TURN_LEFT;

else prowl.arg = TURN_RIGHT;
} else {

prowl.arg = 0; // else target is in dead-zone, straight ahead
}



D. Priorities

The selection of priority levels for the individual subsumption tasks is highly
dependent on the particular problem set that the robot is attempting to solve. For
the examples in this article the main problem to solve is autonomous navigation. A
priority scheme suitable for navigation might not be suitable for, let us say, soda
can collection.

One useful method for assigning priorities for autonomous navigation problems is to
arrange the tasks in order of sensing distance from the robot. That way the
highest priority behaviors are those having sensor detections closest to the robot,
and the lowest priority behaviors are those with the most distant detections.

Highest priority

bumper () detections actually touching the robot

feelers () detections within 2 inches of robot

ir () detections within 18 inches of robot

sonar () detections within 32 feet of robot

navigation() “detections” within 2731 inches of robot

photo () detections within 93 million miles of robot (the Sun!)
cruise () detections at infinity (always)

Lowest priority

VI. Navigating through a sample space

The figure below illustrates the path of a robot moving through a space, using our
version of the four-behavior subsumption model from Flynn/Jones, illustrated in the
first schematic at the top of this article. The colored circles represent which
behavior is controlling the robot for that part of its path: photo() is yellow,
prowl () cruise mode is black, ir() is red, and bumper () is blue.




A. Navigation while seeking a bright light: an analysis

1. The room has a ceiling light toward the back and a low wall between it and the
robot. There is also a black leather hassock which does not reflect IR light very
well. The robot begins in the lower left corner facing across the room.

2. The default prowl() behavior in cruise() mode requests full speed, straight
ahead. The photo () behavior requests full speed and left turn, towards the bright
ceiling light. The ir () and bumper () have no detections and their subsumption
flags are FALSE, so the photo() command is passed to the motors. [yellow]

3. The robot arcs forward and left until the ceiling light is directly in front of
the robot, and the photo() flag becomes FALSE. At that point the prowl () command
cruise() mode takes over and drives the robot straight toward the light. [black]

4. When the robot gets within about 18 inches of the low wall, the IR detectors
begin to see it. What it does next depends on the angle at which it approaches the
wall. In the drawing above, the left sensor sees the wall first and begins to
request that the robot turn right. The ir() behavior has higher priority than the
photo(), so the arbitrator passes the turn right commands to the motors, and
photo(), which now wants to turn left, towards the light, is subsumed along with
the prowl () output. [red]

5. After the ir() behavior clears the wall, it releases control of the robot and
the photo behavior, which has been wanting to turn left, takes control of the robot
and turns it back towards the wall, where it is again seen by the IR. [vellow then
red]

6. In this fashion the robot “swims” along the wall, with the photo pulling it
toward the light and the IR pushing it away from the wall, in a wall-following

behavior not implemented by the programmer directly. It “emerges” from the two
behaviors and their interaction with the light and wall. These are called
emergent behaviors. [red]

7. When the robot reaches the end of the wall the ir() behavior no longer prevents
the photo() behavior from turning the robot far enough left to face the light. The
photo() behavior then releases control and the prowl() behavior drives again
straight towards the light. [yellow then black]

8. Between the robot and the light there is a black leather hassock that does not
reflect IR well, and because the ir() behavior does not see it and subsume
prowl(), the robot has a collision on its left bumper with the hassock. That
triggers a backup-turnright-goforward ballistic behavior that allows the robot to
drive clear of the hassock before releasing its control. [blue]

9. When the ballistic behavior completes, it releases control and the photo()
behavior, which is now requesting a left turn, steers the robot left towards the
light and then releases control to the prowl () behavior when the light is directly
ahead. [yellow, then black]

10. What happens next depends on the robot's ability to maneuver but the robot
will probably circle endlessly underneath the ceiling light.

B. Navigation while seeking a target waypoint coordinate.

If the photo() behavior in the above walk-through is replaced by the navigate()
behavior seeking a coordinate target at the location of the ceiling light, the
behavior and path of the robot will be very much the same as described above. If
the prowl () navigate behavior is used instead, the robot will also slow down and
stop upon reaching the target location.



C. Actual Navigation Examples

Here are some videos of the robots seeking on a target coordinate with various
obstacles in the way.

1. LEGOBot seeking on a target 8 feet away and back, with a chair in the way,
running only prowl () and bumper () behaviors:

<http://www.geology.smu.edu/~dpa—-www/robo/leqo/lego-06.mpg>

2. LEGOBot seeking a target 8 feet away and back, with a cardboard box in the way,
running prowl (), bumper(), and ir() avoid behaviors:

<http://www.geology.smu.edu/~dpa-www/robo/lego/lego-02.mpg>

3. SR04 maneuvering in the attic of the Heroy building at SMU. It is seeking a
coordinate 24 feet away and back to the origin, with a bunch of junk and attic
detritus in the way. It is running prowl(), ir(), sonar(), and bumper () behaviors:

<http://www.geology.smu.edu/~dpa-www/robots/mpeqg/sr04 _ob3.mpg>

4. SR04 seeks four coordinate waypoints in the shape of a square, with obstacles
and moving feet in the way:

<http://www.geology.smu.edu/~dpa—-www/robots/mpeqg/sr04 sqg 001x.mpg>

5. SR04 collects empty soda cans and returns them to 0,0 while seeking on three
target coordinate locations in the shape of a T.

<http://www.geology.smu.edu/~dpa-www/robots/mpeg/cancan.mpg>

6. jBot seeking a pair of coordinates 20 feet apart over rough terrain:

<http://www.geology.smu.edu/~dpa—-www/robo/jbot/jbot_rough_01.mpg>

7. jBot seeking a pair of coordinates 100 feet apart, with gardens and concrete
benches in the way:

<http://www.geology.smu.edu/~dpa-www/robo/jbot/jbot _gardenx.mpg>

8. jBot seeking a coordinate target 1500 feet through the woods and back to the
origin:

<http://www.geology.smu.edu/~dpa-www/robo/jbot/jbot_hatrick2 2.mpg>

9. jBot seeking a coordinate target half mile away, with a large institutional
building, campus, and parking lots in the way:

<http://www.geology.smu.edu/~dpa—-www/robo/jbot/jbot2/jbot_ti2.mpg>



http://www.geology.smu.edu/~dpa-www/robo/jbot/jbot2/jbot_ti2.mpg
http://www.geology.smu.edu/~dpa-www/robo/jbot/jbot_hatrick2_2.mpg
http://www.geology.smu.edu/~dpa-www/robo/jbot/jbot_gardenx.mpg
http://www.geology.smu.edu/~dpa-www/robo/jbot/jbot_rough_01.mpg
http://www.geology.smu.edu/~dpa-www/robots/mpeg/cancan.mpg
http://www.geology.smu.edu/~dpa-www/robots/mpeg/sr04_sq_001x.mpg
http://www.geology.smu.edu/~dpa-www/robots/mpeg/sr04_ob3.mpg
http://www.geology.smu.edu/~dpa-www/robo/lego/lego-02.mpg
http://www.geology.smu.edu/~dpa-www/robo/lego/lego-06.mpg

VII. Some Observations

My hope is that enough information is available here so that others in the DPRG and
elsewhere who have asked about the control code for these robots will be able to
implement similar software on their own creations.

This tutorial has concentrated on navigation tasks but the same principles apply
for arbitrators used to control other robot functions and their behaviors, such as
grippers and other physical I/0 devices.

Steve Rainwater of Robots.net, who encouraged me to write this article, is working
with several others to create a DPRG database of GPL'd robot code that has been
developed by the robotics community, and hopefully some of the code for these
robots will make it into that repository as well.

23 Mar 2007
Denton, Texas
dpa



Appendix: Locate A Target

A function for determining distance and heading to an arbitrary coordinate location
from the robot's location in Cartesian space where 0,0 is the place at which the
robot was last reset.

2 */
/* locate_target () uses these global variables */

/* _______________________________________________________________________ */
float X _target; /* X lateral relative target position */

float Y target; /* Y vertical relative target position */
float target_bearing; /* bearing in radians from current position */
int target_distance;, /* distance in inches from position */

int heading error; /* heading error in degrees */

int last_target_distance; /* history */

/* _______________________________________________________________________ */

/* calculate distance and bearing to target X,Y
inputs are X _target, X pos, and Y _target, Y pos
output is target_distance, heading_error

*/
void locate_target ()
{
float x,y;
x = X _target - X _pos;
y = Y target - Y pos;
last_target_distance = target_distance;
target_distance = (int) (sqrt((x*x)+(y*y)));
i1f (x > 0.00001) target_bearing = 90-(atan(y/x) *RADS) ;
else if (x < —-0.00001) target_bearing = —-90-(atan(y/x)*RADS) ;
heading_error = (int) ((target_bearing — (theta*RADS)));
heading error = heading error$360;
i1f (heading error > 180) heading error —-= 360,
else if (heading error < —-180) heading_error += 360;
}
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